
A Sliding Window Approach to Natural Hand Gesture Recognition using a
Custom Data Glove

Granit Luzhnica∗

Know-Center GmhH
Jörg Simon†

Know-Center GmhH
Elisabeth Lex‡

Knowledge Technologies
Institute, Graz Univ. of

Technology &
Know-Center GmhH

Viktoria Pammer§
Knowledge Technologies

Institute, Graz Univ. of
Technology &

Know-Center GmhH

ABSTRACT

This paper explores the recognition of hand gestures based on a data
glove equipped with motion, bending and pressure sensors. We se-
lected 31 natural and interaction-oriented hand gestures that can
be adopted for general-purpose control of and communication with
computing systems. The data glove is custom-built, and contains
13 bend sensors, 7 motion sensors, 5 pressure sensors and a magne-
tometer. We present the data collection experiment, as well as the
design, selection and evaluation of a classification algorithm. As we
use a sliding window approach to data processing, our algorithm is
suitable for stream data processing. Algorithm selection and feature
engineering resulted in a combination of linear discriminant anal-
ysis and logistic regression with which we achieve an accuracy of
over 98.5% on a continuous data stream scenario. When removing
the computationally expensive FFT-based features, we still achieve
an accuracy of 98.2%.

Index Terms: C.3 [Special-Purpose and Application-Based Sys-
tems]: Signal processing systems I.5.2 [Design Methodology]:
Classifier design and evaluation I.5.2 [Design Methodology]: Fea-
ture evaluation and selection I.5.2 [Design Methodology]: Pattern
analysis I.5.4 [Applications]: Signal processing H.5.2 [User Inter-
faces]: Input devices and strategies H.5.2 [User Interfaces]: Inter-
action styles

1 INTRODUCTION

Gesture recognition has been an active field of research for more
than two decades in human computer interaction. Initially, the mo-
tivation was to detect and recognise sign language [1, 14, 33, 41].
The goal mostly was to develop computing systems that could
understand and translate sign language. More recently, gesture
recognition has gained interest as basis for gesture based interac-
tion in a wide range of use cases, such as crisis management [45],
TV remote controlling [34], interacting with computer [18, 24],
gaming interfaces [23, 26, 45, 52], augmented reality applica-
tions [17, 43, 48, 50], hands-free interaction in car driving [27],
providing virtual training for car driving [50] or detecting a driver’s
fatigue [25]. In the medical area, robot nurses are envisioned to
detect surgeon’s hand gestures and to assist with necessary surgi-
cal instrument [45]. In another type of use case, computer systems
detect gestures in order to understand user activities. For instance,
robots have been envisioned to analyse gestures in order to track
which tasks are already completed in order to be able to seamlessly
take over with the next steps [6, 35]. Sometimes, it is useful to
only observe and document the gestures, as in the case of assem-

∗e-mail:gluzhnica@know-center.at
†e-mail:jsimon@kow-center.at
‡e-mail: elex@know-center.at
§e-mail: viktoria.pammer@tugraz.at

bly lines to document the work for quality assurance [40]. More in
general, the goal to detect assembly line tasks is an area of active re-
search [20, 32, 46, 51]. Gesture recognition has also been explored
in the context of logging activities of daily life: In [38], the authors
explore the possibility to detect eating habits via recognising the
gestures for eating and drinking (bringing the hand to the mouth).
In [39], activity logging based on both smartwatch and smartphone
sensing is used to detect drinking too much coffee or not eating.

With this work we contribute to the field of gesture recogni-
tion by exploring the recognition of natural and interaction-oriented
hand gestures based on sensors worn on users’ hands. To that end,
we designed a custom data glove equipped with sensors that cap-
ture both motion and state of the hand and fingers. We concen-
trated on gestures that are widely known and that can reasonably
be adopted to control and communicate with computing systems.
Our envisioned use case is that of mapping out a general-purpose
gesture alphabet. It should be easy to learn for users, and should
be able to replace some of the interactions with computing systems
(selecting, browsing, etc.) that are currently performed via mouse
or smartphone gestures.

We approached this goal by conducting a data collection experi-
ment in which multiple users performed such gestures. In parallel to
sensing, the gestures were manually annotated with gesture names.
This resulted in a labelled set of hand gestures, which we used to
extract representative features and to train a supervised learning al-
gorithm. Then, we evaluated the performance of our algorithm “on-
line”, i.e. on a continuous sensor data stream. The contributions of
this work are three-fold:

• A data set of natural hand gestures, which were gathered in a
data collection experiment with 18 adults, and are manually
annotated with gesture names.

• Features selection - We identified characteristic features for
gestures and investigated similarities between gestures.

• Algorithm selection - We identified a performant algorithm
for classifying gestures in a continuous sensor data stream.

2 RELATED WORK

We identified two strands of research that are relevant for our work:
firstly, research that deals with vision based systems for gesture
recognition and secondly research that deals with wearable sen-
sors for gesture recognition. In the first case, the gesture recog-
nition relies on an infrastructure built into the environment (e.g.,
using Kinect or webcam) whereas in the second case, the gesture
recognition relies on wearable sensor technologies like data gloves,
armbands or smartwatches.

Vision based systems for gesture recognition. Typically a cam-
era that is mounted in the environment records human hands and the
system extracts features from the individual frames of the record-
ing. Sometimes there is a filtering process involved which removes
unwanted objects like e.g heads from the image or video [7]. Typ-
ically, postures are predicted [5, 7] and then a grammar is con-

81

IEEE Symposium on 3D User Interfaces 2016
19–20 March, Greenville, SC, USA
978-1-5090-0842-1/16/$31.00 ©2016 IEEE

structed to recognise gestures, where a gesture is defined as a se-
quence of postures [9]. For instance, in [7], the authors first de-
tect and track hands and then recognise ten postures with an ac-
curacy of 96% in camera images with a multi-class SVM. Simi-
larly, in [5] a single web cam is used as source, from which the au-
thors extract Haar-like features and use AdaBoost to discriminate
between four postures: two finger, palm, fist, little finger. The au-
thors achieve an accuracy of over 90%. In [1], the authors achieve
an accuracy of 99% by using PCA and a Euclidian distance based
classifier to recognise 25 international hand alphabet postures from
images of the gestures. An alternative vision based approach is to
use coloured gloves in which different parts of the hand are marked
with different colours, making it much easier to track gestures [12].

Wearable sensor based systems for gesture recognition. The
majority of wearable sensor systems for gesture detection are
gloves equipped with sensors. In most research endeavours, gloves
are custom-built. In [29], a recurrent neural network (RNN) is
used to recognise the following Japanese sign language gestures:
father, mother, brother, sister, memorise, forget, like, hate, skilled
and unskilled. The gestures are constructed using 42 previously
recognised postures representing Japanese letter alphabet with an
accuracy of 96%. The data were generated using VPLDataGlove.
In [50], the authors use a feed-forward neural network capable of
distinguishing between 15 gestures with an accuracy of 98%. Data
were recorded with a CyberGlove with 18 sensors. More recently,
a feed-forward neural network was used to construct a hand gesture
recognition system for interacting with robots [30] . Using data
from CyberGlove II (providing 22 joint-angle measurements), the
authors were able to recognise 10 different artificial gestures with
an accuracy of 99.8% and 30 gestures with an accuracy of 96.3%.
In this work, the authors initially performed segmentation by identi-
fying whether each of the data readings belongs to a gesture. These
segments were used as input to the machine learning algorithm.
In [52], data from EMG and a wrist-worn accelerometer were used
to build a system that recognises 18 gestures with an accuracy of
91.7%. The defined gestures were used to play a virtual rubic’s
cube game. In [36], authors used a list of 22 natural hand gestures.
The gestures originally stem from [10]. While analysing the data,
the authors first resampled and interpolated the data. They then
used LDA to discriminate between the resampled segments with an
accuracy of 92.8%. This shows that there is a clear separability be-
tween those gestures. However, in a live recognition system, such
resampling and interpolation is not possible unless the start and end
time of the gesture that needs to be recognised can be detected.

Recently, there has been a growing research interest in gesture
recognition based on consumer good technology like smart watches
(e.g., [11, 44, 49, 53]). In [49], the authors report the classification
of 37 interaction oriented gestures, i.e. gestures that are intended to
be used for controlling other devices (turning the arm, simulating
a click, pinch to zoom, etc..). The gestures are detected based on
smartwatch sensor data only, and with an accuracy of 98% by using
Naive Bayes algorithm. The authors report different numbers in
a subsequent demo paper, namely 27 gestures with 96% accuracy
using Logistic Regression or Decision Trees [53]. However, the
data in the latter paper were collected only by a single participant;
and the participant performed gestures from a fixed arm position.

When comparing two approaches, vision based systems are more
sensitive to the environment. Lighting conditions, scene and back-
ground details are issues that affect such systems [45]. In the case
of cameras, there might be also privacy issues; and different coun-
tries have different regulations concerning video recordings in non-
private environments. Wearable sensor based systems, especially
glove based ones, can be uncommfortable [45] or even pose a hy-
gienic problem [19]. On the other hand, wearable technologies
provide in principle the possibility for higher privacy as the data
are a priori more anonymous than pictures or videos. When it

comes to accuracy, many authors report very high accuracies (in
the higher 90s) for the selected set of gestures using either tech-
nique [1, 7, 30, 50].

In this paper, we take the wearable sensors approach. In con-
trast to some other works, we emphasise capturing the dynamics of
the gestures, and present gesture recognition using a custom data
glove. Our work also differs from previous work since we take
a sliding window approach in combination with dual labelling in
the test set. Sliding window is a technique for data preprocessing
in which information is extracted (statistics, aggregates, features,
etc...) over a “sliding window” that contains a fixed number of sam-
ples. This enables us to use representative features that aggregate
sensor data over time. Interestingly, the sliding window approach,
to the best of our knowledge, has not been used in gesture recogni-
tion system even though it very common approach in activity recog-
nition [21, 22, 31].

3 GESTURE DETECTION SYSTEM

In this section, we describe the design of the overall gesture detec-
tion system: What kind of gestures should our system detect, and
what kind of information/sensors are required for this purpose?

3.1 Interaction-Oriented and Natural Hand Gestures
As described in the introduction, we are interested in a general-
purpose gesture alphabet with which to control computers and com-
municate with them. Essentially, it would be possible to develop a
completely novel gesture language for such a purpose. A study
looking at inventing custom gestures [15] showed however, that a
user can only remember a very limited number (about two) of such
artificial gestures. Therefore, we are looking at gestures that are
widely known, even though there may be cultural differences re-
garding their popularity and meaning. Additionally, there should
be a plausible relationship between the gesture and an interaction
between human and computer.

These criteria resulted in the following 31 hand gestures (see
Table 1). Our gesture set was initially based on the list of 22 natural
gestures described in [10]. We added the following: The numbers
one to five, as they would be useful to select items; popular touch-
based swipe gestures such as swipe left, right and down (up was
already on the original list), as these would be useful for navigation.
Finally, we added lateral grasp (Grasp 2) and palmar grasp (Grasp
1) gestures, as we think that grasping objects would be useful in
interaction with 3D virtual objects. After the first trial, the gesture
walk was discarded as it was difficult to perform due the IMU chips
on the fingers.

3.2 Custom Data Glove
The above gestures vary a lot in their dynamics: Some gestures
contain a lot of complex motions (e.g continue) whereas some are
very close to a posture (e.g. numbers one, two, ...).

We planned a data glove that emphasises motion detection of the
fingers (which implies that we would have motion sensors on the
fingers); as well as hand postures (which implies that we would use
bend sensors). The glove is depicted in Figure 1.

We placed two bend sensors on each finger. The upper sensor
measures the bending (which translates to angle) of the finger rel-
ative to the hand, whereas the lower sensor measures the bending
between middle segment and base segment of the finger. Another
bend sensor is placed between the thumb and index finger in order
to measure the distance/angle between them. Two more bend sen-
sors (in opposite direction) are placed on the wrist in order to be
able to measure wrist flexion/extension. Overall, this gives 13 bend
sensors. Additionally, each finger tip is equipped with a pressure
sensor (5 pressure sensors). Furthermore, 7 IMUs1 are placed, one

1IMU (inertial measurement unit) chip contains a gyroscope and an ac-
celerometer

82

Gesture Description
(1) One Number one by extending index finger
(2) Two Number two by extending index and middle finger
(3) Three Number three by extending index, middle and ring finger
(4) Four Number four by extending all fingers except thumb
(5) Five Number five by extending all fingers
Thumbs up Thump stretched pointing up, other fingers form fist
Thumbs down Thump stretched pointing down, other fingers form fist
Point to self Pointing at self with thumb
Shoot Hand in form of a gun and then vibrate
Scissor Stimulating scissors with two fingers
Cutthroat Using index finger
Continue Waving like circular motion with the flat hand
Knocking Forming a fist and moving the fist up and down
Waving Shaking the flat hand left and right
Come here Flat hand with palm upwards: Simultaneous flexing the all

fingers but the thumb
Go away Hand with palm downwards, all fingers but thumb flexed. Si-

multaneous stretching them
Push away Flat hand with palm pointing fore wards, then moving the

whole hand forward
Never mind Flat hand with palm pointing left above the head, then moving

the whole hand left
Talking Thumb and 4 fingers pointing forward. Then moving 4 fin-

gers up and down
Calling Hand is a fist, but thumb and small finger are extended
Walking Hand is a fist, but making a walking motion with the index

and middle finger
Shoulder pat patting with the open hand on a virtual shoulder
Point Pointing in front with index finger
Swipe left Stretched hand with palm pointing left, flexing it completely

to the right first, then flexing it to the left, in a circular motion
Swipe right swiping with palm pointing right, and left to right motion
Swipe up swiping with palm pointing up, and bottom to top motion
Down swiping with palm pointing down, and top to bottom motion
Turn Hand rotation
Zoom Reverse pinch using index finger and thumb
Grasp 1 Palmar grasp (in the experiment we used a glass)
Grasp 2 Lateral grasp (in the experiment we used a pen)

Table 1: List of 31 interaction-oriented hand gestures.

at the top of each finger, one on the back of the hand and one on
the wrist. The wrist IMU is placed exactly at the position where a
watch would be. This allows the data recorded with the glove to
also be treated as if it came from a smartwatch by simply ignoring
the input from other sensors. Finally, a magnetometer is placed on
the back of the hand.

At the beginning of our study, various data gloves had already
been available commercially. All of them emphasise bend sensors
in fingers, and thus focus on hand postures. In contrast, our glove
contains both bend and motions sensors (gyroscope + accelerom-
eter) on each finger, thus focussing more on hand motion, i.e. the
dynamic aspects of gestures. The MiMu Glove2 is used to produce
music by some means of gesture detection. It employs one IMU at
the wrist, 4 bend sensors at the fingers, and vibrators at the under-
arm to provide haptic feedback. Fifth Dimensional Technologies3

offers two gloves that are equipped with bend sensors and abduction
sensors between fingers. CyberGlove Systems 4 offers CyberGlove
II equipped with two bend sensors on each finger, four abduction
sensors, sensors measuring thumb crossover, palm arch, wrist flex-
ion and wrist abduction. Virtual Labs5 offers a range of data glove
products (VMG Lite, VMG 10, VMG30, VMG 30 Plus), all of them
equipped with bend sensors on the fingers, 9-DOF orientation sen-
sors for hand and wrist, as well as tactile feedback vibrators.

2http://mimugloves.com
3http://www.5dt.com/
4http://www.cyberglovesystems.com
5http://www.virtualmotionlabs.com/

Figure 1: Custom data glove, and scheme of sensor positions. 1:
An IMU and a pressure sensor are placed on each finger tip. 2:
Two bend sensors cover the two main joints of each finger. 3: The
thumb is special as it has 3 bend sensors. 4: An IMU and a Magne-
tometer is on the top of the hand. Here also an analog multiplexer is
mounted to combine all the bend sensors. 5: An IMU is placed on
the wrist. Additionally, one bend sensor at the top of the wrist and
one at the bottom of the wrist give the angle of the hand to the fore-
arm. 6: All sensors are connected to an Arduino board to collect
the data and send it to a computer.

Our custom data glove is a hardware prototype and as such it has
some limitations, mainly regarding usability: For long-term wear-
ing, the glove should for instance be made of more comfortable
material, be made of smaller and not visible electronic components,
should be available in different sizes, and be wirelessly connected
to the computing unit.

4 DATA COLLECTION EXPERIMENT

We collected sensory data annotated with gesture names in the sub-
sequently described data collection experiment.

4.1 Participants

We collected data from 18 healthy adults: 11 males and 7 females.
Participants were aged between 24 and 40 years.

4.2 Procedure

Before starting with the data recording, the purpose and procedure
of the experiment were explained. Participants were asked to re-
main seated during the experiment in an office chair. In front of
them (on the desk), a monitor was placed. The monitor was used
to display the instructions of the experiment. The overall setup is
shown in Figure 2.

For each gesture, the following steps were performed in the given
sequence:

1. Name of the gesture was shown on the screen (2s)

2. A video was displayed; it showed an actor performing the ges-
ture (without glove; 6s-7s)

3. A counter was shown on the screen alarming the participants
that the recording was about to start (3s)

83

Figure 2: Participant performs ”One (1)” gesture while the progress
bar is on the screen

4. The participant was asked (audio and text on screen) to start
performing the gesture. A progress bar was displayed on
screen, indicating the time the participant had to finish the
gesture (3s). The appearance of the progress bar started the
time window called “automatic labelling” (4) in Figure 3.

5. When the participant actually started the gesture, the experi-
ment observer pressed a button on the keyboard. This indi-
cated the start point of the time window called “manual la-
belling” (5) in Figure 3.

6. When the participant ended the gesture, the experiment ob-
server released the button. This was the end point of the time
window called “manual labelling” (6) in Figure 3.

7. When the progress bar ended, the time window called “auto-
matic labelling” (7) in Figure 3 was ended.

The timeline of one gesture is illustrated in Figure 3. Every ges-
ture was performed several times by every participant (5 or 10 times
depending on willingness of participant) in a row. The gesture name
and the video of the actor performing the gesture (steps 1 and 2)
were shown only for the first repetition of the gesture, whereas the
counter, progress bar and labelling (steps 3-7) were the same in ev-
ery repetition.

4.3 Data Annotation
Figure 3 illustrates how the data collection experiment procedure
relates to the continuous sensor signals that we recorded. Here we
comment on two things regarding data annotation: Firstly, we used
manual labels as the ground truth, i.e. the labels we refer to in train-
ing and testing. Automatic labels are used to perform sanity check
on manual labels e.g. sometimes it happened that the experimenter
forgot to label a gesture. We discarded such data. Secondly, when
sliding windows are moved over the continuous sensor signals, then
there are windows with no gesture in it (window 1 in Figure 3), with
partial gestures in it (windows 1 and 5 in Figure 3), and windows
with full gestures in it (windows 2 and 3 in Figure 3). For algorithm
design (Section 5) only windows with no or full gestures were used,
while for evaluation of the selected algorithm in realistic settings,
the algorithm was also evaluated on windows that contain a partial
gesture (Section 6).

5 ALGORITHM DESIGN

In this section, we describe the process of selecting the best per-
forming supervised learning algorithm, and the optimum configu-
ration. By configuration we mean selecting parameters for win-
dow slicing and parameters for spectral components of the win-
dow. Overall, we prepared a list of all possible configurations and

Figure 3: Experiment timeline for a single repetition and sliding
windows construction

cross-validated each of them against the set of all chosen learning
algorithms. Finally, in order to choose the best configuration, we
averaged the cross validation results over all algorithms and con-
sidered configurations with the highest average scores. The details
of each step are given below.

5.1 Data Pre-processing

Since in the accelerometer readings the gravity component is
present and we only need to know the real acceleration value, we
first removed the gravity component from the data readings. The
gravity component was removed using a complementary filter [13],
which typically gives satisfying results and is computationally less
expensive than a Kalman Filter [16]. In addition, in order to get
independent axis accelerator and gyroscope values, we computed
the norm (norm =

√
x2 + y2 + z2) of accelerometer and gyroscope

vector for each of our IMUs. Magnetometer values were discarded
as their values provide information related to the absolute location
of the hand whereas gesture recognition should work regardless of
the hand location. Furthermore, all data dimensions are normalised
with zero mean and a standard deviation of 1.

5.2 Window Length and Step-size

As basic unit for classification we use sliding windows, i.e. data
windows of fixed sample size that constitute snapshots of the con-
tinuous data stream. Features are computed per window. Sliding
windows are a well-established method of feature extraction used in
many domains (speech to text [37], activity recognition [21, 22, 31],
etc..). Their advantage is that the extracted features can be used
with almost any algorithm [8]. They typically have two configura-
tion parameters: size and step. For parameter selection, we cross
validated the data with several window sizes (140, 160, 180, 200
samples, where 1 second contains 85-87 samples).

As for the labels, we consider one window to have a gesture label
only if the window contains the whole gesture. Otherwise we label
it as idle class. We used steps of 20, 30, 40 and 50 samples and

84

again used cross validation to select a value for this parameter. The
details of cross validation are given in Section 5.4.

5.3 Feature Engineering
The recorded data set contains the following dimensions: (x, y, z,
norm) values of gyroscope, (x, y, z, norm) values of accelerome-
ter, values of pressure sensors, values of bending sensors. For each
data dimension we used the following descriptive statistic as fea-
tures: minimum, maximum, range, average, standard deviation and
signal energy from the sliding windows. Minimum and maximum
values of the bend sensors should contribute to capturing the static
part (posture) of the gesture. On the other hand, the derived values
from the norm value of the gyroscope and the accelerometer should
capture orientation independent motions aspects, as the norm is just
the intensity of the accelerometer or gyroscope in any direction.

For the gyroscope and accelerometer values, we also used the
spectrum features, namely the amplitude of Fast Fourier Trans-
form (FFT) coefficients for the signal in the given window. For
FFT, one has to decide which and how many coefficients are used.
Typically, either the n first or the n largest (by amplitude) coeffi-
cients are used [28]. Figure 4 shows that in our case, on average,
the amplitudes of FFT coefficients decrease monotonically. This
means that the first coefficients are the largest ones, which in turn
means that the lower frequencies are dominant. Therefore, using
the amplitudes of the first n coefficients is a good way to proceed.
For selecting a suitable number of first FFT coefficients, we use
again cross-validation to choose amongst the following options:
n ∈ {5,6,10,15}.

In total we extract 78 statistical features from bending sensors,
30 statistical features from pressure sensors, 336 statistical features
and n× 56 FFT features for IMUs, where n is the number of first
FFF components used for the window. It is worth pointing out that
the majority of the features come from motion sensors (IMUs).

Figure 4: Average amplitudes (over all signals) of the first FFT
coefficients (excluding the zeroth) for all 200 frame windows

To avoid correlated features, we calculated correlations between
features and automatically removed the features that highly corre-
late with each other (with absolute Pearson correlation index more
or equal to 0.99). Finally, extracted features are normalised with
zero mean and a standard deviation of 1.

5.4 Procedure for Algorithm and Parameter Selection
In this section, we describe our procedure to select the best per-
forming algorithm and parameters such as length and step-size for
sliding windows, and the number of FFT coefficients to be used
as features. We evaluated window sizes of 140,160,180,200, and

window step-sizes of 20,30,40,50, as well as a number of FFT co-
efficients of 5,6,10,15. The choice of these options is discussed in
Sections 5.2 and 5.3.

As previously mentioned, similar to activity recognition solu-
tions, we emphasise the motion sensors and follow an approach
(sliding windows) that is frequently used in activity detection.
Therefore, we chose classification algorithms that have proven to
provide robust performance on activity recognition using wearable
sensors [21, 22, 46, 47], namely:

• K Nearest Neighbours (KNN)

• Linear Discriminant Analysis Classifier (LDAC)

• Support Vector Machines (SVM) with a linear kernel

• Logistic Regression (LR)

According to the survey presented in [3], discriminative clas-
sification algorithms are very effective in identifying features that
mostly contribute to discriminations between activities using wear-
able sensors. Therefore, our discriminative classification algo-
rithms (in our case SVM and LR) should work very well in case the
gesture is well captured by extracted features of windows. LDAC
is suitable when a linear transformation (LDA) of the data yields in
linearly separable classes (in the transformed space). On the other
hand, KNN uses the notion of distance in feature space and it can
perform good even when linear separability is not possible.

Considering the large number of features we have (724 when
using 5 FFT components, 1284 when using 15 of them), we were
concerned about overfitting. Therefore, we employed dimensional-
ity reduction techniques prior to training. We used Principal Com-
ponent Analysis (PCA) which applies an orthogonal linear trans-
formation of the data, in an unsupervised manner, resulting in a
maximised variance of data in the transformed space. On the other
hand, we also used the supervised linear transformations, namely
Linear Discriminant Analysis (LDA) and also it’s state-of-the-art
alternative Spectral Regression Discriminant Analysis (SRDA) [4].
The latter methods utilise class labels for minimising the within-
class variance and maximising between-class variance (in the trans-
formed space). An extensive analysis on how the used algorithms
and dimensionality reduction work, including the mathematics be-
hind it can be found in [2]. In our cross-validation process, the clas-
sifiers have been trained in both ways: without any dimensionality
reduction and with prior dimensionality reduction transformations.

For each window and step-size, we prepared the dataset as fol-
lows: We selected only those windows from the complete dataset
that are “unambiguous windows”, i.e. windows that contain either
no gesture, or a full gesture (see Figure 3, where window 1 contains
no gesture, windows 2 and 5 contain a partial gesture and are not
part of the training data set, and windows 3 and 4 contain a full ges-
ture). The rationale was that the classifier should only learn the full
gestures, not parts of gestures.

Moreover, the classes in our data are unbalanced as the majority
of the windows are labeled as “idle class” (no gesture). Balancing
was achieved by the following procedure: First we calculate the
average number of windows per gesture which we will denote by k.
Then we removed, before splitting to train and test set, all idle class
windows except k random number of idle class windows from the
data set. It is worth mentioning that, the balancing was used only
during the algorithm and parameter selection process but not during
the algorithm evaluation process (Section 6).

The respective training data set was then 80% randomly chosen
windows, and the test data set the remaining 20%. We used the fol-
lowing procedure to select the winner combination of configuration
(parameters) and algorithm:
First, we compute the performance of each combination “configura-
tion/algorithm” by 5-fold cross validation over the training data set.

85

Then, for each configuration we compute the average performance
over all algorithms to select the winner configuration. The win-
ner algorithm would then be the best-performing algorithm for this
configuration. The rationale for this procedure was that we wanted
to have the configuration to be as robust as possible in relationship
to an algorithm in order to avoid overfitting, i.e. we did not want to
select a configuration that only works for a single algorithm.

5.5 Algorithm and Parameter Selection Results
The procedure of selecting and parametrising a classification algo-
rithm that we described above in Section 5.4 yielded the follow-
ing: The best configuration is the one with a window length of 200
frames, step-size of 20 and 15 FFT coefficients with an average
cross-validation (across all compared algorithms) score of 95.6%.
Another configuration with less computationally intensive param-
eters, namely window length of 200 frames, window steps for the
sliding windows of 50 and only 5 FFT coefficients had an average
cross validation score of 95.3%. Considering that the score differ-
ence is minimal whereas the computation efficiency is higher, we
selected the latter configuration. For this configuration, the best per-
forming algorithm was LDA+LR with an cross-validation f1 score
of 99.8%. Here, initially LDA was used to perform dimensionality
reduction to 32 components and then a logistic regression algorithm
was trained and tested on the dimensionally reduced data.

6 ALGORITHM EVALUATION

In this section, we report on accuracies on the full dataset for the
selected algorithm and configuration, which constitutes a realistic
scenario of continuous data stream analysis.

6.1 Algorithm Performance on Continuous Sensor Data
As realistic algorithm performance, we consider its performance
on the following dataset: All windows are used in the test data set,
which includes those with a partial gesture windows. A partial ges-
ture window is the one that contains only a portion of a gesture
(see window 2 and 3 in Figure 3). Moreover, there is no balancing
(neither in the training nor test data set) but class weighting is used
when training in order to prevent bias towards the larger classes.
This corresponds to the data that would be available in a real world
continuous sensor data stream. For windows that contain a partial
gesture, we assume the algorithm prediction is correct when the
classification outcome is either the idle class or the correct gesture
class that is partially in the window. We refer to this strategy as dual
labelling in the test set.

On this test set, the LDA+LR algorithm with a window size of
200, a step size of 50, and with only the 5 first FFT gestures in the
feature set, performs with an 98.5% f1 score. The confusion matrix
is given in Table 2 and the receiver operating characteristic (ROC)
curve is visualised in Figure 5. Here, from 9581 windows, 9440
were classified correctly. From the correctly classified windows,
1618 contained full gestures, 2802 partial gestures and 5020 con-
tained no gesture at all (belonged to the idle class). On the other
hand, 141 windows were misclassified from which 6 contained full
gestures, 106 partial gestures and 29 came from the idle class.

6.2 Algorithm Performance without FFT Components
Removing FFT calculations during the gesture extraction can speed
up the processing the data stream. The rationale details for such
an optimisation is discussed in Section 7.2 below. Removing the
FFT components from all accelerometer and gyroscope dimensions
results in a recognition f1 score (when considering dual labelling
of the ambiguous windows in test set) of 98.2%.

7 DISCUSSION

As our results reveal, we achieve a high classification accuracy in
general. As presented in Figure 5, the prediction confidence is also

high. It is important to stress that our results were achieved by in-
cluding in the test set the windows that contain partial gestures. In a
live gesture recognition system, there is no way of excluding them.
More specifically, in a live scenario, we need to get a sliding win-
dow over a stream of data, as visualised in Figure 3, and since we
don’t know when a gesture starts and when it ends, we can’t know
beforehand whether a partial gesture is in a window. In the test set,
we used the dual labelling strategy which delivers an accuracy of
98.5% (see Table2 and Figure 5). We argue that dual labelling is
acceptable for a live system: In the end, it is just a matter of how
fast the recognition system realises that the gesture is being per-
formed. In case it predicts the correct gesture class (the one that is
partially contained in window), then we can recognise the gesture
even before it is completed. Otherwise, if the classifier predicts it
to be a idle class window, then the next window (or previous one)
will be a window with the full gesture in it and will be classified
correctly.

Figure 5: ROC curve for weighted average of all classes

7.1 Analysis of Confusions between Classes
Although overall performance is really good, it is not perfect: some
windows are misclassified. In this section, we analyse the confu-
sions between classes. As presented in Section 6, there are 141
misclassifications out of 9440 windows, of which 106 misclassified
windows contain partial gestures. We have only 6 misclassifications
from windows that contained full gestures. In the following dis-
cussion, we focus on windows that contain only partial gestures on
them. Several such windows are being misclassified as another ges-
ture and this phenomenon affects mainly the following 10 classes:
Down, Swipe Left, Push Away, Swipe Left, Grasp 2, Point at Self,
Swipe Left, Go Away, Grasp 1 and Zoom.

A further investigation shows that, there are some systematic
misclassification for such windows. For the ”Down” gesture,
nine misclassifications come from windows that partially contain
the “Shoulder pat” gesture, five from ones that partially contain
the “Continue” gesture and six from windows that contain partial
“Swipe left” gestures. When looking on how the gestures move-
ments are performed, the “Shoulder pat” starts and ends very sim-
ilarly to the “Down” gesture. So, in case the start or the end of
the gesture is missing in a window, it seems quite logical that such
a confusion can happen. “Continue” could either start as “Down”
or as a “Swipe Left” gesture (depending from person to person).
Looking into each of those windows reveals that seven out of nine
confusions with “Shoulder pat”contain the beginning (on average
40%) of the of the “Shoulder pat” gesture whereas only two out of

86

N
ot

hi
ng

(1
) O

ne
(2

) T
w

o
(3

) T
hr

ee
(4

) F
ou

r
(5

) F
iv

e
Th

um
bs

up
Th

um
bs

do
w

n
Po

in
t t

o
se

lf
Sh

oo
t

Sc
iss

or
C

ut
th

ro
at

C
on

tin
ue

K
no

ck
in

g
W

av
in

g
C

om
e

he
re

G
o

aw
ay

Pu
sh

aw
ay

N
ev

er
m

in
d

Ta
lk

in
g

C
al

lin
g

W
al

ki
ng

Sh
ou

ld
er

pa
t

Po
in

t
Sw

ip
e

le
ft

Sw
ip

e
ri

gh
t

Sw
ip

e
up

D
ow

n
Tu

rn
Zo

om
G

ra
sp

1
G

ra
sp

2

Nothing 6024 2 1 5 4 3 1 7 1 1 4 2 1 6 12 2 2 3 5 15 3 4 28 2 7 6 8
(1) One 107
(2) Two 113
(3) Three 110 1
(4) Four 116
(5) Five 97
Thumbs up 108
Thumbs
down

116

Point to self 117
Shoot 89
Scissor 126
Cutthroat 110
Continue 96 1
Knocking 123
Waving 133
Come here 111
Go away 93
Push away 111
Never mind 80
Talking 107
Calling 1 128
Walking 110
Shoulder
pat

113

Point 112
Swipe left 103
Swipe right 95
Swipe up 108
Down 1 1 107
Turn 127
Zoom 95
Grasp 1 138 1
Grasp 2 117

Table 2: Confusion matrix of classification using dual labelling in test set. Note that zero values (no misclassification) have been removed
from the table for better readability

nine contain the end (on average 66%) of the gesture. However for
both cases, the prediction confidence is not particularly high: 66%
respectively 46%. Confusions of the “Down” gesture with the ges-
ture “Continue” are predicted with an average confidence is 73%
and all of them happen in windows that contain only the beginning
(on average 30%) of the “Continue” gesture. Similarly, all five win-
dows that are confused with the “Swipe left” gesture contain only
the beginning of the “Swipe left” gesture (on average 29%) and the
prediction confidence is 55%. Only one window that contains the
end of the gesture (51%) is confused with “Down”, with a confi-
dence of 73%.

”Swipe Left” class has nine confusions with windows that par-
tially contain ”Continue”, all of them containing only the end (35%)
of the gesture. Two more confusions happen with windows that par-
tially contain ”Never Mind” gesture and all of them contain only
the last part of the gesture (70%). Interestingly, those confusions
have a relative high prediction confidence (average: 90%). Three
more confusions happen with windows that contain only the last
part (32%) of the “Waving” gesture with a relatively quite low av-
erage prediction confidence (58%).

For the ”Push away”, four misclassifications come from win-
dows with partial ”Continue” gesture. Three of them contain the
beginning (44%) of the gesture and are misclassified with an av-
erage confidence of 44%, whereas the other one contains the last

Classified Full/Partial Gesture Confidence
Correctly Full 98%
Correctly Partial 89%

Incorrectly Full 67%
Incorrectly Partial 57%

Table 3: Average classification confidence depending on whether
the window contains the whole gesture

(73%) part of the gesture is predicted with a confidence of 26%.
Two other confusions happen with partial “Never mind” gestures.
The both contain only the last part (39%) of the gesture and are
predicted with average confidence of 46%.

It therefore seems that the gestures: “Down”, “Push away”,
“Continue” and “Shoulder pat” are very similar either at the begin-
ning or at the end of the gesture. For the other gestures there does
not seem to be a systematic misclassification as the confusions are
distributed among most of the other classes.

To address the partial window misclassification problem, we in-
vestigate whether there is a difference in prediction confidence for
such misclassification in comparison to other windows. From Ta-
ble 3 we can see that the misclassified windows that contain only
partial gestures have quite a low average prediction confidence

87

(57%). One way to minimise the number of misclassifications
would therefore be to accept only predictions with higher confi-
dence. According to Table 3, such a setting would mainly affect
misclassified windows and especially those with partial gestures
on them. This would be acceptable in a live recognition system
as when a gesture is performed, there will be window(s) with the
whole gesture on it where prediction confidence would be higher.
Therefore, the practical classification performance would not be af-
fected since the gesture would still be detected either before or af-
terwards. The only practical implication is how early a gesture can
be recognised.

7.2 Computing efficiency
There are several performance indicators to consider when provid-
ing a gesture recognition system for human computer interaction.
Besides the accuracy, which is the most important, recognition
speed (delays hurt the user experience [45]) and power consump-
tion important. Recognition speed and power consumption directly
relate to computational cost. Both are of particular relevance if the
gesture recognition is planned to be carried out in a mobile or em-
bedded device, which seems very practical especially for wearable
sensor based systems for gesture recognition. the Section 5.4, we
mentioned that we chose the sliding window step of 50 and the
number of FFT coefficients to be 5, even though the configuration
was not the best one in terms of cross-validation score. The ra-
tionale behind reducing the number of FFT coefficients was that
it reduces the number of features and therefore the computational
costs and therefore power consumption. Choosing a step-size of 50
frames instead of 20, enables us to perform predictions less often
(only after each 50 frames). On the other hand of course, a larger
window step means a larger delay: In our case, 50 frames window
size means a delay of 0.625 seconds, which we deemed acceptable
for the time being. In the end, this is a trade-off in system design of
course.

Removing all FFT components (as described in Section 6.2), on
the other hand, results in a more significant reduction of compu-
tational costs. During the feature extraction process, descriptive
statistical calculations like min, max, average, energy and standard
deviation can be calculated with a time complexity of O(n), where
n is the number of points (window size). On the contrary, the com-
putation of FFT has a time complexity of O(nlogn) and it is per-
formed for every data dimension d that contains accelerometer or
gyroscope values (d = 56). In addition, for every such calcula-
tion the amplitudes of the first k coefficients need to be extracted
with a time complexity of O(k). By having only descriptive statical
features that are calculated in O(n), the feature extraction process
results in a total complexity of O(f n), where f is the number of
features. It is worth mentioning that removing FFT components
also results in 280 less features. Moreover, descriptive statistic can
easily be computed incrementally for a sliding window in a data
stream [42] (see the online algorithm6). To our knowledge, there is
no way of calculating FFT incrementally in a sliding window.

Removing FFT also reduces the complexity in the classification
process, though only by a constant factor. First, LDA performs a
matrix multiplication (of dimensions f × c) to transform data into
the new space. For a single window (of dimensions 1× f), this
transformation has a time complexity of O(f c), where c is the di-
mension of the new space, which in our case equals the number of
classes. Note that c≤ f . After this transformation, the multinomial
logistic regression is applied for classification. Given the reduced
dimensions of the window (1×c), it has a time complexity of O(c2)
(where c is the number of classes), making the whole classification
complexity of O(f c). By removing FFT components we reduce f
by 280 which impacts the computational complexity of classifica-
tion. Note that we do not discuss the time complexity of training

6https://en.wikipedia.org/wiki/Algorithms for calculating variance

process as the training can be done offline and therefore it does not
play a role in the live system performance.

8 CONCLUSION

In this paper, we presented a gesture recognition system built for
recognising 31 natural and interaction-oriented hand gestures. Our
feature extraction is based on statistics and spectral properties of
a sliding window over the data stream. We show that our features
are highly discriminative for natural hand gestures and we achieve
an accuracy of 98.5% with our gesture recognition system, which
relies on linear discriminant analysis for dimensionality reduction
and logistic regression for classification. Moreover, accuracy does
not significantly suffer (98.2%) when the computationally expen-
sive FFT features are removed. The main contribution of this paper
lies in showing that all selected gestures can be recognised very
well, given the sensors on the custom data glove and selected fea-
tures extracted using sliding window approach.

This result is relevant for gesture-based interfaces, as it means
that continuous gesture detection based on continuous sensing is
accurate enough; and can be implemented in a computationally ef-
ficient manner. Computational efficiency is particularly important
in wearable systems, considering the mobile nature of such sys-
tems. One direction of future work following up this line of argu-
mentation will be an implementation of the recognition system on
smartphone (wirelessly connected to the glove), making it a com-
plete mobile solution. Further directions of future work on com-
puting efficiency will include an exploration of which sensors are
irrelevant and could be completely removed without degrading the
recognition accuracy. Less sensors means less features, and hence
more computational efficiency, but also fewer sensors to supply
with power. Spreading out from the core of gesture recognition,
it will of course be interesting to design interactions with computer
systems using such natural and interaction-oriented gestures that
can be recognised well.

ACKNOWLEDGEMENTS

Work on this paper is partially funded by MoreGrasp (H2020-ICT-
2014-1 643955). The Know-Center is funded within the Austrian
COMET Program - Competence Centers for Excellent Technolo-
gies - under the auspices of the Austrian Federal Ministry of Trans-
port, Innovation and Technology, the Austrian Federal Ministry of
Economy, Family and Youth and by the State of Styria. COMET is
managed by the Austrian Research Promotion Agency FFG.

We thank Eduardo Veas for his advice for building the data glove
and planning the experiment study, and Christoffer Öjeling for his
work on the data glove and his help in preparing and carrying out
the experiment.

REFERENCES

[1] H. Birk, T. B. Moeslund, and C. B. Madsen. Real-time recognition of
hand alphabet gestures using principal component analysis. In In 10th
Scandinavian Conference on Image Analysis, 1997.

[2] C. M. Bishop. Pattern Recognition and Machine Learning (Informa-
tion Science and Statistics). Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 2006.

[3] A. Bulling, U. Blanke, and B. Schiele. A tutorial on human activity
recognition using body-worn inertial sensors. ACM Comput. Surv.,
46(3):33:1–33:33, Jan. 2014.

[4] D. Cai, S. Member, X. He, J. Han, and S. Member. Srda: An efficient
algorithm for large-scale discriminant analysis. IEEE Transactions on
Knowledge and Data Engineering, pages 1–12, 2008.

[5] Q. Chen, N. D. Georganas, and E. Petriu. Real-time vision-based
hand gesture recognition using haar-like features. In Instrumentation
and Measurement Technology Conference Proceedings, 2007. IMTC
2007. IEEE, pages 1–6, May 2007.

[6] E. Coupet, F. Moutarde, and S. Manitsaris. Gesture recognition us-
ing a depth camera for human robot collaboration on assembly line.

88

Procedia Manufacturing, 3:518 – 525, 2015. 6th International Confer-
ence on Applied Human Factors and Ergonomics (AHFE 2015) and
the Affiliated Conferences, {AHFE} 2015.

[7] N. Dardas and N. D. Georganas. Real-time hand gesture detection and
recognition using bag-of-features and support vector machine tech-
niques. Instrumentation and Measurement, IEEE Transactions on,
60(11):3592–3607, Nov 2011.

[8] T. Dietterich. Machine learning for sequential data: A review. In
T. Caelli, A. Amin, R. Duin, D. de Ridder, and M. Kamel, edi-
tors, Structural, Syntactic, and Statistical Pattern Recognition, volume
2396 of Lecture Notes in Computer Science, pages 15–30. Springer
Berlin Heidelberg, 2002.

[9] P. Garg, N. Aggarwal, and S. Sofat. Vision based hand gesture recog-
nition. World Academy of Science, Engineering and Technology,
49(1):972–977, 2009.

[10] P. Glomb, M. Romaszewski, S. Opozda, and A. Sochan. Choosing
and modeling the hand gesture database for a natural user interface. In
Proceedings of the 9th International Conference on Gesture and Sign
Language in Human-Computer Interaction and Embodied Commu-
nication, GW’11, pages 24–35, Berlin, Heidelberg, 2012. Springer-
Verlag.

[11] J. Han, S. Ahn, and G. Lee. Transture: Continuing a touch gesture on
a small screen into the air. In Proceedings of the 33rd Annual ACM
Conference Extended Abstracts on Human Factors in Computing Sys-
tems, CHI EA ’15, pages 1295–1300, New York, NY, USA, 2015.
ACM.

[12] M. M. Hasan and P. K. Mishra. Hand gesture modeling and recogni-
tion using geometric features: a review. Canadian Journal on Image
Processing and Computer Vision, 3(1):12–26, 2012.

[13] W. Higgins. A comparison of complementary and kalman filter-
ing. Aerospace and Electronic Systems, IEEE Transactions on, AES-
11(3):321–325, May 1975.

[14] C.-L. Huang and W.-Y. Huang. Sign language recognition using
model-based tracking and a 3d hopfield neural network. Mach. Vi-
sion Appl., 10(5-6):292–307, Apr. 1998.

[15] J.-F. Jego, A. Paljic, and P. Fuchs. User-defined gestural interaction: A
study on gesture memorization. In 3D User Interfaces (3DUI), 2013
IEEE Symposium on, pages 7–10, March 2013.

[16] R. E. Kalman. A new approach to linear filtering and prediction prob-
lems. Journal of Fluids Engineering, 82(1):35–45, 1960.

[17] M. Kavakli, M. Taylor, and A. Trapeznikov. Designing in virtual re-
ality (desire): A gesture-based interface. In Proceedings of the 2Nd
International Conference on Digital Interactive Media in Entertain-
ment and Arts, DIMEA ’07, pages 131–136, New York, NY, USA,
2007. ACM.

[18] H. Kenn, F. V. Megen, and R. Sugar. A glove-based gesture interface
for wearable computing applications. In Applied Wearable Computing
(IFAWC), 2007 4th International Forum on, pages 1–10, March 2007.

[19] E. C. Kiruthika, E. Coimbatore, and N. Kumar. Survey on hand ges-
ture recognition. International Journal of Engineering Research and
Technology, 3(2):943–946, 2014.

[20] H. Koskim”aki, V. Huikari, P. Siirtola, and J. R”oning. Behavior mod-
eling in industrial assembly lines using a wrist-worn inertial measure-
ment unit. Journal of Ambient Intelligence and Humanized Comput-
ing, 4(2):187–194, 2013.

[21] H. Koskimaki, V. Huikari, P. Siirtola, P. Laurinen, and J. Roning. Ac-
tivity recognition using a wrist-worn inertial measurement unit: A
case study for industrial assembly lines. In Control and Automation,
2009. MED ’09. 17th Mediterranean Conference on, pages 401–405,
June 2009.

[22] N. C. Krishnan and D. J. Cook. Activity recognition on streaming
sensor data. Pervasive Mob. Comput., 10:138–154, Feb. 2014.

[23] A. Kulshreshth and J. J. LaViola, Jr. Exploring 3d user interface tech-
nologies for improving the gaming experience. In Proceedings of the
33rd Annual ACM Conference on Human Factors in Computing Sys-
tems, CHI ’15, pages 125–134, New York, NY, USA, 2015. ACM.

[24] P. Kumar, J. Verma, and S. Prasad. Hand data glove: A wearable real-
time device for human-computer interaction. International Journal of
Advanced Science and Technology, 43, 2012.

[25] B.-G. Lee, B.-L. Lee, and W.-Y. Chung. Wristband-type driver vig-

ilance monitoring system using smartwatch. Sensors Journal, IEEE,
15(10):5624–5633, Oct 2015.

[26] T. Martins, C. Sommerer, L. Mignonneau, and N. Correia. Gaunt-
let: a wearable interface for ubiquitous gaming. In MobileHCI ’08:
Proceedings of the 10th international conference on Human computer
interaction with mobile devices and services, page 367, New York,
New York, USA, Sept. 2008. ACM Request Permissions.

[27] P. Molchanov, S. Gupta, K. Kim, and K. Pulli. Multi-sensor system for
drivers hand-gesture recognition. In IEEE Conference on Automatic
Face and Gesture Recognition, pages 1–8, 2015.

[28] F. Mörchen. Time series feature extraction for data mining using dwt
and dft. Technical report, Math and Computer Science Department,
Philipps University, Marburg, Germany, 2003.

[29] K. Murakami and H. Taguchi. Gesture recognition using recurrent
neural networks. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI ’91, pages 237–242, New York,
NY, USA, 1991. ACM.

[30] P. Neto, D. Pereira, J. Norberto Pires, and A. Moreira. Real-time
and continuous hand gesture spotting: An approach based on artificial
neural networks. In Robotics and Automation (ICRA), 2013 IEEE
International Conference on, pages 178–183, May 2013.

[31] J. Ortiz Laguna, A. Olaya, and D. Borrajo. A dynamic sliding window
approach for activity recognition. In J. Konstan, R. Conejo, J. Marzo,
and N. Oliver, editors, User Modeling, Adaption and Personalization,
volume 6787 of Lecture Notes in Computer Science, pages 219–230.
Springer Berlin Heidelberg, 2011.

[32] J. Ou, Y. Shi, J. Wong, S. R. Fussell, and J. Yang. Combining audio
and video to predict helpers’ focus of attention in multiparty remote
collaboration on physical tasks. In Proceedings of the 8th Interna-
tional Conference on Multimodal Interfaces, ICMI ’06, pages 217–
224, New York, NY, USA, 2006. ACM.

[33] C. Oz and M. C. Leu. American sign language word recognition with a
sensory glove using artificial neural networks. Eng. Appl. Artif. Intell.,
24(7):1204–1213, Oct. 2011.

[34] G. Ren and E. O’Neill. Freehand gestural text entry for interactive
tv. In Proceedings of the 11th European Conference on Interactive TV
and Video, EuroITV ’13, pages 121–130, New York, NY, USA, 2013.
ACM.

[35] A. Roitberg, N. Somani, A. Perzylo, M. Rickert, and A. Knoll. Mul-
timodal human activity recognition for industrial manufacturing pro-
cesses in robotic workcells. In Proceedings of the 2015 ACM on In-
ternational Conference on Multimodal Interaction, ICMI ’15, pages
259–266, New York, NY, USA, 2015. ACM.

[36] M. Romaszewski, P. Glomb, and P. Gawron. Natural hand gestures
for human identification in a human-computer interface. In Image
Processing Theory, Tools and Applications (IPTA), 2014 4th Interna-
tional Conference on, pages 1–6, Oct 2014.

[37] T. J. Sejnowski and C. R. Rosenberg. Parallel networks that learn to
pronounce english text, 1987.

[38] S. Sen, V. Subbaraju, A. Misra, R. K. Balan, and Y. Lee. The case
for smartwatch-based diet monitoring. In Pervasive Computing and
Communication Workshops (PerCom Workshops), 2015 IEEE Inter-
national Conference on, pages 585–590, March 2015.

[39] M. Shoaib, S. Bosch, H. Scholten, P. J. Havinga, and O. D. Incel.
Towards detection of bad habits by fusing smartphone and smart-
watch sensors. In Pervasive Computing and Communication Work-
shops (PerCom Workshops), 2015 IEEE International Conference on,
pages 591–596, March 2015.

[40] T. Stiefmeier, D. Roggen, G. Ogris, P. Lukowicz, and P. Lukowicz.
Wearable activity tracking in car manufacturing. Pervasive Comput-
ing, IEEE, 7(2):42–50, April 2008.

[41] T. Takahashi and F. Kishino. Hand gesture coding based on experi-
ments using a hand gesture interface device. SIGCHI Bull., 23(2):67–
74, Mar. 1991.

[42] K. Tangwongsan, M. Hirzel, S. Schneider, and K.-L. Wu. Gen-
eral incremental sliding-window aggregation. Proc. VLDB Endow.,
8(7):702–713, Feb. 2015.

[43] T.-H. Tsai, C.-C. Huang, and K.-L. Zhang. Embedded virtual mouse
system by using hand gesture recognition. In Consumer Electronics
- Taiwan (ICCE-TW), 2015 IEEE International Conference on, pages

89

352–353, June 2015.
[44] W. Van Vlaenderen, J. Brulmans, J. Vermeulen, and J. Schöning.

Watchme: A novel input method combining a smartwatch and biman-
ual interaction. In Proceedings of the 33rd Annual ACM Conference
Extended Abstracts on Human Factors in Computing Systems, CHI
EA ’15, pages 2091–2095, New York, NY, USA, 2015. ACM.

[45] J. P. Wachs, M. Kölsch, H. Stern, and Y. Edan. Vision-based hand-
gesture applications. Commun. ACM, 54(2):60–71, Feb. 2011.

[46] J. Ward, P. Lukowicz, G. Troster, and T. Starner. Activity recogni-
tion of assembly tasks using body-worn microphones and accelerom-
eters. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 28(10):1553–1567, Oct 2006.

[47] J. A. Ward. Activity monitoring: Continuous recognition and perfor-
mance evaluation. PhD thesis, Swiss Federal Institute of Technology
(ETH) Zürich, 2006.

[48] J. Weissmann and R. Salomon. Gesture recognition for virtual re-
ality applications using data gloves and neural networks. In Neural
Networks, 1999. IJCNN ’99. International Joint Conference on, vol-
ume 3, pages 2043–2046 vol.3, 1999.

[49] C. Xu, P. H. Pathak, and P. Mohapatra. Finger-writing with smart-
watch: A case for finger and hand gesture recognition using smart-
watch. In Proceedings of the 16th International Workshop on Mobile
Computing Systems and Applications, HotMobile ’15, pages 9–14,
New York, NY, USA, 2015. ACM.

[50] D. Xu. A neural network approach for hand gesture recognition in
virtual reality driving training system of spg. In Pattern Recognition,
2006. ICPR 2006. 18th International Conference on, volume 3, pages
519–522, 2006.

[51] P. Zappi, T. Stiefmeier, E. Farella, D. Roggen, L. Benini, and
G. Troster. Activity recognition from on-body sensors by classifier
fusion: sensor scalability and robustness. In Intelligent Sensors, Sen-
sor Networks and Information, 2007. ISSNIP 2007. 3rd International
Conference on, pages 281–286, Dec 2007.

[52] X. Zhang, X. Chen, W.-h. Wang, J.-h. Yang, V. Lantz, and K.-q. Wang.
Hand gesture recognition and virtual game control based on 3d ac-
celerometer and emg sensors. In Proceedings of the 14th International
Conference on Intelligent User Interfaces, IUI ’09, pages 401–406,
New York, NY, USA, 2009. ACM.

[53] Y. Zhao, P. H. Pathak, C. Xu, and P. Mohapatra. Demo: Finger and
hand gesture recognition using smartwatch. In Proceedings of the
13th Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’15, pages 471–471, New York, NY,
USA, 2015. ACM.

90

